Inventor of the Supergrid here in Boulder

In the winter of 2009, Alexander MacDonald, one of the world’s top weather scientists, returned to Boulder, Colorado from climate talks in Copenhagen, Denmark, where he had seen the idea of a workable, international strategy to combat climate change all but collapse.

During the talks, he had managed to have a few beers with U.S. climate negotiators. Any global solution that could effectively stop climate change would double the cost of energy, one of them insisted, and no politician who supported that could survive the resulting public backlash. MacDonald had seen news reports quoting a former Washington, D.C., energy policymaker saying that solar and wind power might get cheaper but couldn’t help much because they were too variable.

Then MacDonald came back to his office here, in a building full of meteorologists and other scientists who were voicing the same sense of despair. They said now global warming seemed almost unstoppable. Greenhouse gases would double by the 2050s. Large amounts of ice would melt in Antarctica and Greenland. Sea levels would rise by multiple feet. Parts of the planet could become uninhabitable.

That was the point when MacDonald became determined to prove them all wrong with a radical idea he had quietly been nurturing.

It was that a “supergrid,” a national network of 30,000 miles of high-voltage direct current (HVDC) electricity lines, might cut electricity generating emissions by as much as 80 percent by rapidly moving surplus power generated by wind, solar, hydroelectric and natural gas around the nation. The system, he thinks, could be built in 15 years. The resulting power, most of it coming from the weather, he asserts, would not lift energy bills much above traditional levels.

He mined his laboratory’s supercomputers to get solar and wind data from 152,000 points in the United States on an hourly basis and researched the merits and costs of new HVDC power lines, a new transmission technology first developed in Europe, to see how fast renewable energy could be collected and dispatched. He wanted a new national grid, superimposed on the existing one, that would create a lightning-fast, electricity-trading system. It would match the peaks with the valleys of energy use in different areas.

What would all this cost U.S. consumers? Clack estimates the bill will be $17 billion a year for 30 years. “But we spend $400 billion a year on electricity, so it becomes a small share of the average electric bill,” he said. “You pay that, but you end up reducing electricity costs over time.”

While he compares his HVDC grid to an electric version of the federal Interstate Highway System, which originated in the 1950s, he believes it would be built more quickly and cheaply by private contractors in much the same way as a national network of fiber-optic cables was built during the 1990s. The supergrid would not be funded by tax dollars but by electricity consumers, according to his plan.

Leave a Comment

Your email address will not be published.